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Abstract: Novel 5-ring heterocyclic building blocks are synthesized. These can be incorporated into analogs
of peptide antibiotics such as microcin B17, which is a potent DNA-gyrase inhibitor that exhibits eight
thiazole and oxazole moieties. In particular, the syntheses of imidazole and bisoxazole amino acids as novel
peptidomimetics are reported, this includes a new procedure for the oxidative conversion of the intermedi-
ates oxazoline, imidazoline as well as oxazole-oxazoline into the corresponding heteroaromatic compounds.
A mixture of 1,8-diazabicyclo-[5.4.0.]-undec-7-ene/carbon tetrachloride/acetonitrile and pyridine proved to
be a very effective and mild agent. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

The variety of natural products containing thiazole,
oxazole and imidazole rings have encouraged nu-
merous synthetic efforts. During the last decade a
particularly broad spectrum of 5-ring heterocycles
containing natural products, has been isolated from
marine organisms [1-3]. Such 1,3-oxazole, thiazole
and imidazole derivatives are the subjects of inten-
sive research [4-16]. In particular, thiazole, oxazole
and imidazole amino acids, which may also play a
key role in biological activities of unusual peptides,
are important intermediates for natural product
synthesis and peptidomimetics. As part of our suc-

Abbreviations: Boc, tert-butoxycarbonyl; Fmoc-Arg(Pbf)-, N-a-fluo-
renylmethoxycarbonyl - N¢ - (2,2,4,6,7 - pentamethyldihydrobenzo-
furane-5-sulfonyl)-2-amino-4-guanidino-butyl; Z, benzyloxycar-
bonyl; DME, dimethoxyethane; DMF, N,N-dimethylformamide;
DBU, 1,8-diazabicyclo[5.4.0.Jundec-7-ene; HMPT, tris-(diethy-
lamino)-phosphinoxide.

* Correspondence to: Department of Chemistry, Southwest Univer-
sity ‘N. Rilski’, Iv. Michailov str. 66, 2700 Blagoevgrad, Bulgaria.
E-mail: IVANKAST@aix.swu.bg

Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.
CCC 1075-2617/99/090392-07$17.50

cessful total synthesis of the 43-peptide gyrase in-
hibitor microcin B17 [17-21], we have developed
efficient methods for the preparation of various thi-
azole and oxazole derived amino acids which are
characteristic structural elements of this antibiotic.
In this article, we report novel 5-ring heterocyclic
building blocks that can be easily incorporated into
new analogs of microcin B17 and related peptides.
We discovered a novel procedure for the oxidative
conversion of an imidazoline intermediate into the
corresponding imidazoles using a mixture of 1,8-di-
azabicyclo[5.4.0.]-undec-7-ene, CCl,, acetonitrile
and pyridine [21].

MATERIALS AND METHODS

Thin-layer chromatography: TLC-silica gel plates,
glass sheets coated with silica gel (E. Merck, Darm-
stadt); solvent systems: A= CHCl;/MeOH/H,O (80/
30/5); B =CHCI3;/MeOH/CH;COOH (95/5/3); C=
CHCIl;/MeOH/(9/1); D = EtOAc/n-hexane (1/1). Silica
gel for flash chromatography was from J.T. Baker
(Deventer, Holland).



Mass Spectrometry: API III triple quadrupole
mass spectrometer equipped with an electrospray
ion source at atmospheric pressure (Sciex, Thorn-
hill, Canada); electrospray ionization mass spectra
(ESI-MS) were recorded in the positive mode.

NMR-Spectroscopy: Bruker AC 250 spectrometer
(Bruker Physics, Karlsruhe, Germany); chemical
shifts referenced to the solvent peaks [6 ('H,
[D4ICH;0H) = 3.31 and ¢ (*3C, [D,JCH;0H) = 49.15;
J (*3C, CDCly) =77; (*H, [Dg]DMSO) =2.49 and §
(*3C[Dg]DMSO) = 39.5].

N-a-Fluorenylmethoxycarbonyl-N®-(2,2,4,6,7-penta-
methyldihydrobenzofuran-5-sulfonyl)-arginine
Amide (2)

Fmoc-Arg (Pbf)-OH (3.24 g, 5 mmol) (1), pyridine
(0.25 ml) and (Boc),O (1.5 g, 6.5 mmol) were dis-
solved in dioxane (15 ml), and then ammonium
hydrogencarbonate (0.5 g, 6.3 mmol) was added
and the mixture was stirred for 16 h [22]. The
reaction mixture was diluted with water (30 ml) and
stirred until crystallization was completed. The
crude product was filtered off, washed with water
and crystallized from EtOAc/n-hexane. Yield: 2.3 g
(71%); ESI-MS: m/z: 648 [M+H]*.

N-a-Fluorenylmethoxycarbonyl-N®-(2,2,4,6,7-penta-
methyldihydrobenzofuran-5-sulfonyl)-arginine
Thioamide (3)

Lawesson’s reagent (0.732 g, 1.8 mmol) and a solu-
tion of 2 (1.61 g, 2.5 mmol) in dimethoxyethane (50
mmol) was stirred at room temperature (r.t.) until
the starting material was consumed (TLC monitor-
ing in system C) [23]. Compound 3 was crystallized
from EtOAc/n-hexane. Yield: 1.3 g (78%); ESI-MS:
m/z: 664 [M+ H]*.

2-(N-«-Fluorenylmethoxycarbonyl-N®-(2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl)-2-
amino-4-guanidinobutyl)thiazole-4-carboxylic Acid
)]

3-Bromo-2-oxo-propionic acid (0.5 g, 3 mmol),
thioamide 3, (1.3 g, 2 mmol), and CaCO; (0.570 g,
5.57 mmol) were added to dry EtOH (60 ml) and
stirred at r.t. under argon for 24 h [24]. The organic
layer was concentrated in vacuo, and the residue
was purified by crystallization from EtOAc/ether.
Yield: 1.25 g (85.6%); '*C-NMR ([Dg]DMSO): 12.1,
15.07, 17.54 (Pbf, CHj’s), 18.86 (Pbf, C-3), 25.6 (Arg
y-C), 25.8 (Pbf, CHy’s on C-2), 28.1 (Arg f-C), 38.2
(Pbf C-4), 42.3 (Arg 5-C), 47 (Fmoc-C-9), 53.1 (Arg

Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.

PEPTIDE BACKBONE MODIFICATION 393

«-C), 65.5 (Fmoc-CH,), 73 (Pbf C-2), 116.0-146.94
(C-aromatic), 131.5 (C%.). 146.9 (C%,). 156.03
(Fmoc-CO), 157.5 (Arg {-C), 162.1 (C%,), 176.6 (Arg
CO); ESI-MS: m/z 732 [M+H] *.

N-« -tfert-Butoxycarbonylglycine Amide (5)

Gly-NH,-HCI (22.0 g, 0.2 mol), triethylamine (28.0
ml, 0.2 mol) and (Boc),O (48.0 g, 0.22 mol) in
THF/water (4:1) (300 ml) were stirred at r.t. until the
starting material was consumed (TLC system A).
Yield: 31.0 g (89%).

N-a -tfert-Butoxycarbonyl-2-aminomethyl-
iminoethylether (6)

The imino ether 6 was prepared from 5 according to
the procedure described in Reference [25]. The tri-
ethyloxonium hexafluorophosphate (3 g, 10 mmol)
was added in one portion to a stirred solution of 5
(1.75 g, 10 mmol) in chloroform (50 ml) at 0°C, and
the mixture was stirred for 20 h; compound 6 was
obtained as an oil and used without purification.
Yield: 1.13 g (84.9%); IR (Nujol): v= 1653 cm !
(C=N); ESI-MS: m/z: 203 [M +H] .

N-« -tert-Butoxycarbonyl-2-aminomethyl-
imidazoline-4-carboxylic Acid Methyl Ester (7)

Imidazoline 7 was prepared according to the proce-
dure described in Reference [26], starting from 6 (2
g, 10 mmol) and L-2,3-diaminopropionic acid
methyl ester hydrochloride [27,28], (1.13 g, 7.3
mmol) in chloroform (30 ml). Crystallization from
diethyl ether/n-hexane. Yield: 1.49 g (80%); 'H-
NMR:([D,JCH3O0H): 6 =1.45 (s, 9H, Boc-CHj;), 3.31
(t, 2H, CH2,), 3.82 (s, 3H, OCHy), 4.16 (d, 1H, CH,),
4.84 (s, 1H, CH,), 5.04 (s, 1H, NH).!3C-NMR:
([IDLJCH;0H): 6 =28.53 (Boc-CHj;), 37.94 (CH,), 50
(OOCH,), 53.6 (Ci,). 59.2 (CZ,). 81.68 (Boc-Cq),
155.1 (Boc-CO), 170.48 (C%,), 171.97 (COO); ESI-
MS: m/z: 258 [M+H] .

N-a-tert-Butoxycarbonyl-2-aminomethyl-imidazole-
4-carboxylic Acid Methyl Ester (8)

DBU (0.6 ml, 6 mmol) was added to 7 (0.5 g, 2
mmol) in a mixture of CCl, (10 ml), pyridine (15 ml)
and acetonitrile (15 ml) [21]. After 3 h at r.t. the
solvent was removed in vacuo, the residue dissolved
in EtOAc, the solution extracted with 0.5 N HCI and
the aqueous phase reextracted with EtOAc (2 x).
The EtOAc phase was washed with brine, dried, and
the solvent evaporated. Crystallization from EtOAc/
n-hexane. Yield: 0.425 g, (83%); 'H-NMR:
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(ID,JCH;0H): 6=1.39 (s, 9H, Boc-CHy), 3.73 (s,
3H, OCH,), 4.17 (d, 2H, CH,), 8.02 (s, 1H, NH),
8.36 (s, 1H, CH2,). !3C-NMR: ([D,JCHSOH): 6 =
29.2 (Boc-CHy), 38.5 (CH,), 50.4 (OOCHj), 78.3
(Boc-Cq), 126.5 (Cf,), 128 (C3,), 155.1 (Boc-CO),
170.2 (C2%,), 173.1 (COO); ESI-MS: m/z: 256[M +
H]*.

N-«-Benzyloxycarbonylglycine Amide (9)

Aqueous ammonia (20 ml) was added to Z-Gly-OH
(8 g, 40 mmol) and NMM (4.5 ml, 40 mmol) in THF
(50 ml) at —20°C. After 3 h at r.t. and subsequent
evaporation, the residue was precipitated with 10%
NaHCO,, filtered, and the solid was washed with
water, dried, and crystallized from EtOAc/n-hex-
ane. Yield: 7.3 g (90%).

N-«-Benzyloxycarbonyl-2-aminomethyl-
iminoethylether (10)

The imino ether 10 was prepared from 9 (6.24 g 30
mmol) according to the procedure described in Ref-
erence [25], obtained as an oil and used without
purification. Yield: 6.7 g (95%); ESI-MS: m/z: 237
[M+H]*.

N-«-Benzyloxycarbonyl-2-aminomethyl-oxazoline-
4-carboxylic Acid Methyl Ester (11)

Oxazoline 11 was prepared according to the proce-
dure described in Refs. [29,30] starting from 10
(2.3 g 10 mmol) and H-Ser-OMe-HCI (1.55 g, 10
mmol) in chloroform (100 ml). Oxazoline 11 was
obtained as an oil and used without purification.
Yield: 2.86 g (98%).

N-«-Benzyloxycarbonyl-2-aminomethyl-oxazole-4-
carboxylic Acid Methyl Ester (12)

DBU (3 ml, 30 mmol) was added to 11 (2.8 g, 9.6
mmol) in CCl,/acetonitrile/pyridine (2/3/3). After 3
h at r.t. the solvent was extracted with 0.5 N HCI
and the aqueous phase was reextracted with
EtOAc (2 x). The EtOAc phase was washed with
brine, dried, and the solvent evaporated. Chro-
matography on silica gel (EtOAc/n-hexane, 1/1) af-
forded oxazole 12. Yield: 0.94 g (33%); ESI-MS:
m/z: 291 M+ H]*.

N-a«-Benzyloxycarbonyl-2-(2'-aminomethyloxazol-4-
yAmide (13)

Aqueous ammonia (12 ml) was added in one por-
tion to a stirred solution of 12 (2.1 g. 7 mmol) in

Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.

MeOH (30 ml). The mixture was stirred at r.t. for 3
h, after which the MeOH was evaporated in vacuo.
Crystallization was from methanol/diethyl ether.
Yield: 1.88 g (98%); ESI-MS: m/z: 256 [M + H]*.

N-«-Benzyloxycarbonyl-2-(2' -aminomethyloxazol-4-
yl)-iminoethylether (14)

The imino ether 14 was prepared from 13 as de-
scribed for compound 10 (1.8 g, 6.88 mmol). The
product was obtained as an oil and used without
purification. Yield: 1.88 g (86%).

N-a-Benzyloxycarbonyl-2-(2'-aminomethyloxazol-4-
yl)-oxazoline-4-carboxylic Acid Methyl Ester (15)

The oxazolyl-oxazoline 15 was obtained from 14
(1.83 g, 5.7 mmol) and H-Ser-OMe-HCI (1.3 g, 8.4
mmol). After additional 24 h at r.t., work-up was
carried out as described for compound 11. Com-
pound 15 was crystallized from EtOEt/n-hexane.
Yield: 1.2 g (60%)."H-NMR: ([Dg]DMSO): § =3.7 (s,
3H, OCH,), 4.37 (d, 2H, CH,), 4.9 (2H, CH,-NH),
5.06 (2H, CH,0CO), 7.3 (5H, CgHs-H), 8.01 (br t
1H, NH), 8.6 (H, C2,)). '3 C-NMR: ([Dg]DMSO): é =
37.6 (NH-CH,), 52.2 (OCHj), 65.7 (CH,0), 127.8
(z, C-3,4), 128.3 (C°0xa), 129.3 (C50Oxa), 136.8 (Z,
C-1), 142.9 (C*Oxa), 145.4 (C*Oxa), 156.2 (OCO),
158.9 (C%0Oxa), 162.5 (C%0Oxa), 171.1 (COOMe);
ESI-MS: m/z: 360 [M +H]*.

N-«-Benzyloxycarbonyl-2-(2'-aminomethyloxazol-4-
yl)-oxazole-4-carboxylic Acid Methyl Ester (16)

The oxazolyl-oxazole 16 was prepared from 15 (0.7
g, 1.9 mmol) as described for compound 12. Com-
pound 16 was crystallized from EtOEt/n-hexane.
Yield: 0.360 g (52%); 'H-NMR: ([Dg]DMSO): 6 = 3.8
(s, 3H, OCHj), 4.05 (pt, 2H, CH*Oxa), 4.4 (d, 2H,
CH,), 4.76 (m, 1H, CH*Oxa), 5.06 (Z-CH,0), 7.3 (s,
5H, C¢Hs-H), 8.07 (br t, 1H, NH), 8.95 (s, 1H,
CH®0Oxa). !'3C-NMR: ([Dg]DMSO0):6 =37.7 (NH-
CH,), 51.9 (OCH,), 65.7 (CH,0), 67.6 (C®Oxa),
70.24 (C*Oxa), 127.7 (Z, C,3,4), 132.2 (C°Oxa),
136.8 (zZ, C1), 145.1 (C*Oxa), 155.1 (OCO), 156.3
(C*0Oxa), 160.8 (C?0Oxa), 163 (COOMe); ESI-MS: m/
z: 358 M+ H]*.

N-a-Benzyloxycarbonyl-2-(2'-aminomethyloxazol-4-
ybh)-oxazole-4-carboxylic Acid (17)

The ester 16 (0.358 g, 1 mmol) was dissolved in
dioxane (15 ml) and sodium hydroxide (0.12 g, in 5
ml of water) was added. The mixture was stirred at
r.t. for 1 h. The solution was neutralized with 10%

J. Peptide Sci. 5: 392-398 (1999)



COOH

o . o] M S .. R S

R 1 R 1] R Hl

—<OH _<N H, _<NH2 Y’}jl/
1 2 3 4

Figure 1 Synthesis of Fmoc-Arg(Pbf)-thiazole-4-car-
boxylic acid. R = Fmoc-Arg(Pbf)-; (i) (Boc),O, NH;HCOg; (ii)
Lawesson’s reagent; (iii) 3-bromo-2-oxo-propionic acid.
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Figure 2 Synthesis of N-a-tert-butoxycarbonyl-2-
aminomethyl-imidazole-4-carboxylic acid methyl ester.
R =Boc-NH-CH,-; (i) ET;0PFg; (ii) L-2,3-diaminoprop-
ionic acid-OMe-HCI; (iii) DBU, CCl,, CH3CN,Py.

aqueous solution KHSO, to pH 6. Removal of the
dioxane in vacuo was followed by acidification to pH
3 and the aqueous solution was extracted in vacuo.
Crystallization from EtOAc/n-hexane. Yield: 0.3 g
(90%); 'H-NMR ([Dg]DMSO): 6 =4.44 (d, 2H, CH,),
5.06 (Z-CH,0), 7.3 (s, bH, Z aromatic), 8.04 (br t
1H, NH), 8.8 (s, 1H, CH®Oxa), 8.83 (s, 1H, CH®0xa);

I3C-NMR ([Dg]DMSO): ¢ 37.8 (NH-CH,), 65.9
(CH,0), 127.9 (Z, C-3,4), 128.9 (C°0Oxa), 134.4
(C®0xa), 136.9 (Z, C-1), 140.8 (C*Oxa), 145
(C*Oxa), 155.1 (OCO), 156.5 (C*Oxa), 161.9

(C20xa), 163.1 (COOH); ESI-MS: m/z: 343[M + H]*+
(Figure 4).

OEt
10

o . NH o
R4 A =r—< _"_>R\4\—>\
. NH, N

11
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RESULTS AND DISCUSSION

2-Fmoc-[Arg(Pbf)]-thiazole-4-carboxylic acid (4) was
synthesized according to Figure 1. The amide 2 was
obtained following Pozdnev’s method [22] from
Fmoc-Arg(Pbf)-OH (1) and converted into thioamide
3 by Lawesson’s reagent [23]. Cyclocondensation of
3 with 3-bromo-oxo-propionic acid [24] leads to 4 in
82% yield. For the synthesis of Boc-protected 2-
aminomethyl-imidazole-4-carboxylic acid methyl es-
ter (Figure 2), treatment of the amide 5 with
triethyloxonium hexafluorophosphate gave the
imino ether 6 [25]. The intermediate imidazoline 7
was obtained in high yield (80%) by cyclization of the
imino ether 6 with L-2,3-diaminopropionic acid
methyl ester-HCl [27,28] according to Reference
[26]. Oxidation of 7 gave the imidazole 8 (83%) using
a mixture of DBU/CCl,/acetonitrile/pyridine [21].

The synthesis of Boc-2-(2-aminomethyloxazole-4-
yl)-oxazole-4-carboxylic acid methyl ester was ac-
complished via a novel route (Figure 3). The amide 9
was converted into the imino ether 10 as described
for compound 6. We were able to obtain the interme-
diate oxazoline 11 by cyclization of the imino ether
with a serine ester in chloroform [29,30]. Oxidation
of 11 was performed with the reagent DBU/CCl,/
acetonitrile/pyridine.

The amide 13 was converted into the imino ether
14 as described for compound 10. Formation of the
oxazolyloxazoline 15 occurred in 60% yields as de-
scribed for compound 11. For oxidation of the com-
pound 15 to compound 16, we preferred the
procedure described for compound 12 and the ester
16 was converted to 17 using base hydrolysis.

i \Z \
PN
COOCH, SN
12

COOCH,

. (o] 0o o] [e) (o]
TS ¢ DI o WO N o W o
NS - — NS
N NH2 \<\N OEt \<\N N COOCH3
13 14 15

0 o v
1] .
IS USN
\k\N SN >coocH,
16

0 0-
R\A\M}\COOH

17

Figure 3 Synthesis of N-u-benzyloxycarbonyl-2-(2’aminomethyloxaol-4-yl)-oxazole-4-carboxylic acid. R=Z-NH-CH,; (i)
Et,OPFy; (ii) Ser-OMe-HCl; (i) DBU, CCl,, CH,CN, Py; (iv) MeOH/NH,OH; (v) NaOH/dioxan.
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Figure 4 ESI-mass spectrum of N-o-benzyloxycarbonyl-2-(2'aminomethyl-oxazol-4-yl)-oxazole-4-carboxylic acid. Mass
spectrum of Z-Oxa-Oxa-OH: 343.4 [M+H]*, 360.5 [M+ NH,] ", 365.5 [M+ Na]*, 381.5 [M+K] .

The oxazole 12 was converted into the amide 13
with methanol/aqueous ammonia.

CONCLUSIONS

In this study, we extended the scope of our various
synthetic routes aiming for a larger variety of 5-ring
heterocyclic building blocks that could be useful in
natural product and peptide chemistry, and also in
combinatorial syntheses of compound collections
[31] for lead structure search.

Three novel 5-ring amino acid derivatives were
made accessible. Firstly, a new thiazole containing
dipeptide mimetic derived from L-arginine was syn-
thesized, constituting a trifunctional scaffold which
can be selectively addressed to its amino, guanidino
or carboxy functions. The yields obtained in all
three steps of the synthesis of 4 from commercially
available Fmoc-Arg(Pbf)-OH were satisfying. The
ESI-MS and !'3C-NMR analysis proved the identity
of the final product 4.

Secondly, the dipeptide mimetic 2-aminomethyl-
imidazole-4-carboxylic acid was synthesized. This is

Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.

of obvious interest for a variety of applications in
peptidomimetics. During our experiments, we de-
veloped a novel and useful procedure for the oxida-
tive conversion of intermediate imidazoline into the
corresponding imidazole with a mixture of DBU,
CCl,, acetonitrile and pyridine. This reagent proved
to be superior to the commonly used reagent,
CuBr,/DBU/tris-(dimethylamino)-phosphinoxide
(HMPT). It should be noted that our chosen reagent
yielded the desired product with a higher degree of
purity and a faster condensation than the copper(Il)
bromide reagent.

Thirdly, a ten step synthesis was worked out
starting with glycine, to eventually yield the new
oxazolyl-oxazole tripeptide mimetic with two fused
5-ring heterocycles. This building block may be
used for the synthesis of microcin B17 analogs
[18-21] replacing the structurally related building
blocks in this 43-peptide gyrase inhibitor.
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